BAB III

METODE PENELITIAN

A. Pendekatan dan Jenis Penelitian

a. Pendekatan Penelitian

Penelitian ini menggunakan penelitian kuantitatif. Penelitian Kuantitatif adalah penelitian yang dalam proses pelaksanaan penelitiannya banyak menggunakan angka-angka mulai dari pengumpulan data, penafsiran, sampai pada hasil atau penarikan kesimpulannya. Dalam pemaparannya penelitian kuantitatif lebih banyak menampilkan dan memaknai angka-angka disertai dengan gambar, table, grafik, atau tampilan lainnya. (Machali 2017:17).

b. Jenis Penelitian

Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian eksperimen. Penelitian eksperimen merupakan satu-satunya metode yang dapat menguji secara benar hipotesis menyangkut hubungan sebab akibat (Sundari et al. 2024:20). Desain penelitian eksperimen yang digunakan adalah jenis *Quasi Experimental Design* atau disebut juga eksperimen semu yang menguji variabel bebas dengan variabel terikat yang dilakukan terhadap sampel kelompok eksperimen dan kelompok kontrol.

Desain yang digunakan pada penelitian *quasi Experimental Design* adalah *Nonequivalent Control Group Design*. Pada penelitian ini kelas eksperimen mengikuti pembelajaran dengan menggunakan metode jarimatika sedangkan kelas kontrol mengikuti pembelajaran dengan menggunakan metode konvensional.

B. Lokasi Dan Waktu Penelitian

Penelitian ini dilaksanakan di SDN 75 Kota Bengkulu pada kelas III A dan III B semester genap tahun ajaran 2024/2025 yang berlokasi di JL. RE. Marthadinata, Kelurahan Kandang Kecamatan Kampung Melayu, Kota Bengkulu Prov. Bengkulu.

C. Desain Penelitian

Penelitian ini menggunakan desain penelitian *quasi Experimental Design* atau disebut juga eksperimen semu yang menguji variabel bebas dengan variabel terikat. Desain penelitian ini bertujuan untuk mencari tau antar variabel yang melibatkan kelompok eksperimen dengan kelompok kontrol.

D. Populasi dan Sampel Penelitian

1. Populasi

Sugiyono (Roflin, 2021) Populasi adalah wilayah generalisasi yang terdiri atas objek atau subjek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya (Roflin, Liberty, and Pariyana 2021:5). Jadi populasi merupakan keseluruhan objek atau subjek yang memiliki karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari. Maka yang menjadi populasi dalam penelitian ini adalah seluruh siswa kelas III SDN 75 Kota Bengkulu yang berjumlah 144 orang.

2. Sampel

Sampel didefinisikan sebagai bagian dari keseluruhan serta karakteristik yang dimiliki oleh sebuah populasi. Dijelaskan pula pengambilan sampel dilakukan peneliti karena beberapa kondisi. Pertama, karena jumlah suatu objek penelitian sangat besar dan peneliti tidak mungkin meneliti objek satu per satu secara keseluruhan. Kedua, bertujuan untuk mempelajari objek penelitian dalam skala kecil yang kemudian diberlakukan kepada keseluruhan objek penelitian. Sehingga bisa memanfaatkan waktu sebaik mungkin karena tidak perlu meneliti objek yang jumlahnya terlalu banyak dan karakternya terlalu beragam (Salmaa 2023).

Adapun yang menjadi sampel pada penelitian ini, yaitu 72 orang kelas III A dan III B. Sampel yang diambil menggunakan *Purposive Sampling*. Teknik *Purposive Sampling* adalah teknik pengambilan sampel yang didasarkan atas

suatu pertimbangan, seperti ciri-ciri atau sifat-sifat suatu populasi (Kumara 2018:17).

Tabel 3.1
Sampel Penelitian

NO	Kelas	Jumlah Siswa
1	IIIA	36
2	III B	36
Jumlah		72

E. Definisi Operasional Variabel

1. Variabel Penelitian

Dalam penelitian ini, jarimatika berperan sebagai metode pembelajaran eksperimental (variabel bebas), sedangkan pembelajaran konvensional digunakan sebagai pembanding (variabel kontrol), aktivitas belajar siswa sebagai tolak ukur untuk melihat efektivitas kedua metode tersebut (variabel terikat).

2. Definisi Operasional Variabel

a. Jarimatika

Jarimatika merupakan singkatan dari dua kata yaitu jari dan aritmetika, yang menjadikan jari sebagai metode hitung. metode jarimatika adalah metode pembelajaran yang menggunakan jari-jari tangan sebagai alat bantu untuk mempercepat perhitungan aritmetika.

b. Pembelajaran Konvensional

Pembelajaran konvensional merupakan pembelajaran yang berpusat pada guru, dimana guru memiliki kendali atas sebagian besar penyampaian materi atau informasi penjelasan materi yang belum dipahami siswa, atau dapat juga disebut sebagai metode ceramah.

c. Aktivitas Belajar

Aktivitas belajar merupakan kegiatan yang dilakukan siswa selama mengikuti proses pembelajaran. Aktivitas belajar dapat membantu siswa

membangun pengetahuan, menumbuhkan disiplin belajar, dan memupuk kerjasama dengan siswa lain.

d. Pembelajaran Matematika

Pembelajaran matematika merupakan suatu proses interaksi yang diselenggarakan antara guru dan siswa. Proses ini bertujuan untuk memperoleh, memahami, dan mengkomunikasikan informasi yang berkaitan dengan matematika.

F. Teknik Pengumpulan Data

Teknik pengumpulan data merupakan langkah yang paling utama dalam proses penelitian, karena tujuan utama dari penelitian adalah mendapatkan data. Berikut teknik pengumpulan data yang dilakukan antaralain:

1. Tes

Tes adalah instrumen yang digunakan untuk mengumpulkan data atau informasi dalam bentuk pengetahuan dan keterampilan seseorang. Tes pengetahuan dilakukan dalam bentuk tertulis dan lisan. Tujuannya adalah untuk mengukur tingkat pengetahuan seseorang terhadap suatu objek yang ditanyakan (Abdullah et al. 2022:67). Tes tertulis yang digunakan adalah butir soal yang mempunyai beberapa jawaban pengecoh diberikan kepada subjek penelitian untuk membantu mereka meningkatkan kemampuannya. Konsep tes yang digunakan adalah dengan konsep *Pretest* dan *Posttest*. *Pretest* merupakan tes yang diberikan sebelum pembelajaran menggunakan metode jarimatika, pemberian tes ini berlaku pada kelompok penelitian nantinya untuk mengetahui kemampuan awal siswa. *Posttest* merupakan adalah tes akhir yang digunakan untuk mengukur sejauh mana peningkatan kemampuan peserta didik dalam memecahkan soal ujian yang diberikan setelah pembelajaran menggunakan metode jarimatika dalam pembelajaran matematika.

Soal test yang digunakan berdasarkan ruang lingkup materi pelajaran matematika tentang operasi hitung perkalian bilangan cacah sampai 100. Soal test yang digunakan berdasarkan ruang lingkup materi pelajaran matematika tentang operasi hitung perkalian. Jenis tes yang digunakan dalam penelitian ini

yaitu tes tertulis dalam bentuk Uraian. Adapun kisi-kisi instrumen tes tersebut, adalah sebagai berikut:

Tabel 3.2 Kisi-kisi instrumen tes

	1				
Pokok Bahasan	Kompetensi Dasar	Indikator	Jenis	Nomor Soal	Banyak butir soal
Operasi	Menyelesaikan	1. menyelesaikan	Isian	1,2,3	3
hitung	masalah yang	operasi hitung	1/2	b.	
perkalian	melibatkan	perkalian pada	1	li.	
bilangan	penggunaan sifat-sifat	bilangan cacah	1-11	-	
cacah	operasi hitung pada		11	13	
RI /	bilangan cacah.	2. memecahkan		11 -	
- /L		masala <mark>h</mark>		11 0	0
2 1		persoal <mark>a</mark> n	Isian	4,5	_ 2
ind	DONA	matematika	+		~
		dalam	11 1		
		kehidupan		11 3	J
Z \\ =		sehari-hari		-// =	2
5/1		yang berkaitan			
	DENC	dengan	m		
		bilangan			
7 -		cacah.			
Jumlah					5 soal

2. Angket

Angket adalah cara pengumpulan data dengan menyebarkan daftar pertanyaan kepada responden, dengan harapan mereka akan memberikan respons atas daftar pertanyaan tersebut. Daftar pertanyaan dapat bersifat terbuka, jika opsi jawaban tidak ditentukan sebelumnya, dan bersifat tertutup

jika opsi jawaban telah disediakan sebelumnya, instrumennya dapat berupa: kuesioner (angket), checklist, atau skala (Abdullah 2015:248). Angket yang digunakan dalam penelitian ini berbentuk angket tertutup dengan cara memberikan tanda *checklist* ($\sqrt{}$) yang berupa pernyataan.

Angket yang digunakan untuk mengukur aktivitas belajar siswa pada kelas eksperimen dan kelas kontrol. Angket yang akan digunakan dalam penelitian ini berbentuk angket tertutup. Angket tertutup adalah angket yang disajikan dalam bentuk sedemikian rupa sehingga responden diminta untuk memilih satu jawaban yang sesuai dengan karakteristik dirinya dengan cara memberikan tanda silang atau tanda *checklist*.(Riduwan 2008:72)

Angket yang digunakan dalam penelitian ini disusun menurut skala *likert*. Setiap jawaban dihubungkan dengan bentuk pernyataan atau dukungan sikap yang diungkapkan dengan kata-kata sebagai berikut.(Riduwan 2008:87)

Pernyataan positif	
Sangat Setuju (SS)	= 4
Setuju (S)	= 3
Tidak Setuju (TS)	= 2
Sangat Tidak Setuju (STS)	1
Pernyataan negatif	0
Sangat Setuju (SS)	= 1
Setuju (S)	= 2
Tidak Setuju (TS)	= 3
Sangat Tidak Setuju (STS)	= 4

Adapun kisi-kisi instrumen dalam penyusunan angket (daftar pernyataan) tersebut, adalah sebagai berikut:

Tabel 3.3 Kisi-Kisi Instrumen Angket Metode Pembelajaran

Variabel	Indikator	Positif	Negatif	Jumlah
Metode	Rasa Senang	1,3		2

Pembelajaran	Perhatian	4,5,10,12	19	5
(X)	Rasa Tertarik	2,6,11	18	4
	Rasa Ingin Tahu	9	17	2
	Antusias/kemauan	7, 8,13	15,16,20	6
	Bekerja sama	14		1

Tabel 3.4
Kisi-Kisi Instrumen Angket Aktivitas Belajar Siswa

Aktivitas	Aspek	Indikator	Positif	Negatif	Jumlah
Belajar	Kegitan visual	Membaca	1	14	2
Siswa		materi	11		7
(Y)	Kegiatan lisan	Bertanya	2,11	15,18,19	5
- // /		Mengemukakan		1 1	S
		Ide/gagasan			C
	- DONA	Diskusi	c71		X
	Kegiatan	Mendengarkan	3,10,9		3
11 1	mendengarkan	Materi			7
		pelajaran			
> //		Mendengarkan			0
	OEN	Presentasi			
	Kegiatan	Membuat	4,5	16,20	4
7	menulis	Ringkasan			
	200	Mengerjakan			
		Latihan			
		Aktif			
		Mengumpulkan			
		ide			
	Kegiatan	Membawa	6,7,12,13		4
	motorik	buku pelajaran			

		Menjaga			
		ketertiban			
		selama			
		pembelajaran			
	Kegiatan	Memecahkan		17	1
4	mental	masalah Menyelesaikan soal	EST	<i>y</i> .	
(9)	Kegiatan emosional	Bersemangat	8	1/2	1

3. Dokumentasi

Dokumentasi dalam konteks penelitian adalah teknik pengumpulan data yang melibatkan pengumpulan dan analisis data dari dokumen-dokumen yang relevan. Dokumen-dokumen ini bisa berbentuk tertulis, rekaman suara, gambar, yang memiliki informasi yang diperlukan untuk menjawab pertanyaan penelitian.

G. Instrumen Penelitian

Instrumen penelitian merupakan alat yang digunakan untuk mengumpulkan, mengukur, dan menganalisis data yang berkaitan dengan tujuan penelitian.

1. Uji Validitas

Validitas adalah istilah yang menggambarkan kemampuan sebuah instrumen untuk mengukur apa yang ingin diukur. Misalnya peneliti ingin mengukur suhu badan, instrumen penelitian yang valid untuk itu adalah alat pengukur suhu dan bukannya alat pengukur berat badan (Syahrum and Salim 2014:133).

Validitas berasal dari kata validity yang mempunyai arti sejauh mana ketepatan dan kecermatan suatu instrumen pengukur (tes) dalam melakukan fungsi ukurnya. Suatu tes dikatakan memiliki validitas yang tinggi apabila alat tersebut menjalankan fungsi ukur secara tepat atau memberikan hasil ukur yang sesuai dengan maksud dilakukannya pengukuran tersebut. Artinya hasil ukur dari pengukuran tersebut merupakan besaran yang mencerminkan secara tepat fakta atau keadaan sesungguhnya dari apa yang diukur (Ramadhan, Siroj, and Afgani 2024:1096).

Adapun teknik korelasi yang bisa dipakai adalah teknik korelasi *product* moment dan untuk mengetahui apakah nilai korelasi tiap-tiap itu *significant*.

Adapun rumus yang digunakan:(Riduwan 2008:98)

$$r_{\text{hitung}} = \frac{N(\Sigma \times Y) - (\Sigma \times) \cdot (\Sigma Y)}{\sqrt{\{N \times Y^2 - (\Sigma \times)^2\} \{N \times Y^2 - \Sigma Y^2\}}}$$

Keterangan:

r_{hitung} : Koefisien Korelasi

 $\sum X$: Jumlah skor item X

 ΣY : Jumlah skor item Y

∑XY : Jumlah perkalian antara X dan Y

 ΣX^2 : Jumlah kuadrat total X

 $\sum Y^2$: Jumlah kuadrat total Y

n : Jumlah responden

Pada tabel dibawah ini dijelaskan secara rinci perhitungan validitas angket item nomor 1.

Tabel 3.5
Pengujian Validitas Angket Item Nomor 1
Penggunaan Metode Pembelajaran

No	X	Y	X^2	Y^2	XY
1	1	55	1	3025	55

2	3	51	9	2601	153
3	4	68	16	4624	272
4	2	52	4	2704	104
5	1	52	1	2704	52
6	3	62	9	3844	186
7	4	74	16	5476	296
8	3	71	9	5041	213
9	J. I	54		2916	54
10	2	67	4	4489	134
11	4	70	16	4900	280
12	3	62	9	3844	186
13	2	48	4	2304	96
14	3	49	9	2401	147
15	4	64	16	4096	256
16	3	66	9	4356	198
17	2	48	4	2304	96
18	4	75	16	5625	300
19	2	51	4	2601	102
20	3	59	9	3481	177
21	3	71	9	5041	213
22	3	68	9	4624	204
23	4	66	16	4356	264
24	4	73	16	5329	292
25	2	63	4	3969	126
26	3	62	9	3844	186
27	4	53	16	2809	212
28	2	54	4	2916	108
29	3	59	9	3481	177
		•		•	

30	4	70	16	4900	280
Σ	86	1837	274	114605	5419

Berdasarkan tabel di atas, dapat dicari validitas soal nomor 1 dengan menggunakan rumus *product moment* sebagai berikut:

$$r_{\text{hitung}} = \frac{N(\Sigma \times Y) - (\Sigma \times) \cdot (\Sigma Y)}{\sqrt{\{N\Sigma \times^2 - (\Sigma \times)^2\} \{N\Sigma Y^2 - \Sigma Y^2\}}}$$

$$= \frac{30 \times 5419 - (86)(1837)}{\sqrt{\{(30 \times 274)\} (86)^2 \{30 \times 114605 - (1837)^2\}}}$$

$$= \frac{162570 - 157982}{\sqrt{(8220 - 7396)(3438150 - 3374569)}}$$

$$= \frac{4588}{\sqrt{824 \times 63581}}$$

$$= \frac{4588}{7238,14}$$

$$= 0,634$$

Dari hasil perhitungan diatas, sehingga dapat diketahui bahwa hasil r-hitung untuk pernyataan nomor 1 sebesar 0,634. Hal tersebut sama dengan jika dihitung dengan menggunakan aplikasi SPSS versi 30, hasil perhitungan untuk pernyataan nomor 1 juga didapatkan sebesar 0,634.

Pada penelitian ini jumlah responden (n) pada saat uji coba tes berjumlah 30, sehingga diperoleh derajat kebebasannya df = n - 2 = 30 - 2 = 28 dan tabel *Product Moment* dengan df = 28 $\alpha = 0.05$ atau 5% diperoleh $r_{tabel} = 0.374$. Apabila $r_{xy} > r_{tabel}$ maka butir soal angket tersebut valid.

Penilaian soal nomor 2 dan seterusnya, dapat dilakukan dengan cara yang sama seperti penilaian soal nomor 1. Hasil analisis validitas butir soal angket penggunaan metode pembelajaran matematika secara keseluruhan dapat dilihat pada tabel dibawah ini:

Tabel 3.6 Validitas butir angket

Pernyataan	r-Hitung	r-Tabel	P (Sig.)	Keterangan
P1	0,634	0,361	< 0,001	Valid
P2	0,551	0,361	0,002	Valid
Р3	0,604	0,361	< 0,001	Valid
P4	0,525	0,361	0,003	Valid
P5	0,634	0,361	< 0,001	Valid
P6	0,624	0,361	< 0,001	Valid
P7	0,296	0,361	0,112	Tidak Valid
P8	0,383	0,361	0,037	Valid
P9	0,452	0,361	0,012	Valid
P10	0,551	0,361	0,002	Valid
P11	0,273	0,361	0,144	Tidak Valid
P12	0,212	0,361	0,260	Tidak Valid
P13	0,0144	0,361	0,940	Tidak Valid
P14	0,517	0,361	0,003	Valid
P15	0,433	0,361	0,017	Valid
P16	0,349	0,361	0,059	Valid
P17	0,299	0,361	0,108	Tidak Valid
P18	0,423	0,361	0,020	Valid
P19	0,471	0,361	0,009	Valid
P20	0,579	0,361	< 0,001	Valid

Berdasarkan interpretasi yang digunakan penulis, perhitungan validitas pernyataan angket dinyatakan valid jika $r_{hitung} > r_{tabel}$, sehingga didapat 15 butir angket yang valid yaitu butir pernyataan nomor 1,2,3,4,5,6,8,9,10,14,15,16,18,19,20. Sedangkan 5 butir pernyataan yang tidak valid atau $r_{hitung} < r_{tabel}$ yaitu butir nomor 7,11,12,13,17.

Tabel 3.7
Pengujian Validitas Angket Item Nomor 1
Penggunaan Aktivitas Belajar Siswa

NO	X	Y	\mathbf{X}^{2}	\mathbf{Y}^2	XY
1	2	43	4	1849	86
2	4	52	16	2704	208
3	4	75	16	5625	300
4	4	56	16	3136	224
5	17	55	1	3025	55
6	4	71	16	5041	284
7	3	59	9	3481	177
8	3	67	9	4489	201
9	4	58	16	3364	232
10	4	73	16	5329	292
11	3	70	9	4900	210
12	3	50	9	2500	150
13	4	56	16	3136	224
14	1	48	1	2304	48
15	4	65	16	4225	260
16	4	61	16	3721	244
17	2	52	4	2704	104
18	4	71	16	5041	284
19	3	48	9	2304	144
20	3	46	9	2116	138
21	4	67	16	4489	268
22	4	64	16	4096	256
23	3	55	9	3025	165
24	3	66	9	4356	198
25	4	65	16	4225	260

26	3	72	9	5184	216
27	2	54	4	2916	108
28	1	49	1	2401	49
29	3	57	9	3249	171
30	4	69	16	4761	276
Σ	95	1794	329	109696	5832

Berdasarkan tabel di atas, dapat dicari validitas soal nomor 1 dengan menggunakan rumus *product moment* sebagai berikut:

$$r_{\text{hitung}} = \frac{N(\sum \times Y) - (\sum \times) \cdot (\sum Y)}{\sqrt{\{N \sum \times^2 - (\sum \times)^2\} \{N \sum Y^2 - \sum Y^2\}}}$$

$$= \frac{30 \times 5832 - (95)(1794)}{\sqrt{\{(30 \times 329)\} (95)^2 \{30 \times 109696 - (1794)^2\}}}$$

$$= \frac{174960 - 170430}{\sqrt{(9870 - 9025)(3290880 - 3218436)}}$$

$$= \frac{4530}{\sqrt{845 \times 724444}}$$

$$= \frac{4530}{7824.01}$$

$$= 0.579$$

Dari hasil perhitungan diatas, sehingga dapat diketahui bahwa hasil r-hitung untuk pernyataan nomor 1 sebesar 0,579. Hal tersebut sama dengan jika dihitung dengan menggunakan aplikasi SPSS 30, hasil perhitungan untuk pernyataan nomor 1 juga didapatkan sebesar 0,579.

Pada penelitian ini jumlah responden (n) pada saat uji coba tes berjumlah 30, sehingga diperoleh derajat kebebasannya df = n - 2 = 30 - 2 = 28 dan tabel *Product Moment* dengan df = 28 $\alpha = 0.05$ atau 5% diperoleh $r_{tabel} = 0.374$. Apabila $r_{xy} > r_{tabel}$ maka butir soal angket tersebut valid.

Penilaian soal nomor 2 dan seterusnya, dapat dilakukan dengan cara yang sama seperti penilaian soal nomor 1. Hasil analisis validitas butir soal angket

penggunaan metode pembelajaran matematika secara keseluruhan dapat dilihat pada tabel dibawah ini:

Tabel 3.8
Validitas butir angket

Pernyataan	r-Hitung	r-Tabel	P (Sig.)	Keterangan	
P1	0,579	0,361	< 0,001	Valid	
P2	0,655	0,361	< 0,001	Valid	
P3	0,439	0,361	0,015	Valid	
P4	0,600	0,361	< 0,001	Valid	
P5	0,562	0,361	0,001	Valid	
P6	0,585	0,361	< 0,001	Valid	
P7	0,257	0,361	0,171	Tidak Valid	
P8	0,750	0,361	< 0,001	Valid	
P9	0,453	0,361	0,012	Valid	
P10	0,564	0,361	0,001	Valid	
P11	0,381	0,361	0,038	Valid	
P12	0,407	0,361	0,026	Valid	
P13	0,599	0,361	< 0,001	Valid	
P14	0,240	0,361	0,201	Tidak Valid	
P15	0,284	0,361	0,128	Tidak Valid	
P16	0,471	0,361	0,009	Valid	
P17	0,257	0,361	0,171	Tidak Valid	
P18	0,750	0,361	< 0,001	Valid	
P19	0,562	0,361	0,001	Valid	
P20	0,038	0,361	0,842	Tidak Valid	

2. Uji Reliabilitas

Reliabilitas atau keandalan adalah konsistensi dari serangkaian pengukuran atau serangkaian alat ukur. Hal tersebut bisa berupa pengukuran

dari alat ukur yang sama (tes dengan tes ulang) akan memberikan hasil yang sama, atau untuk pengukuran yang lebih subjektif, apakah dua orang penilai memberikan skor yang mirip (reliabilitas antar penilai). Reliabilitas tidak sama dengan validitas. Artinya pengukuran yang dapat diandalkan akan mengukur secara konsisten, tapi belum tentu mengukur apa yang seharusnya diukur. Dalam penelitian, reliabilitas adalah sejauh mana pengukuran dari suatu tes tetap konsisten setelah dilakukan berulang-ulang terhadap subjek dan dalam kondisi yang sama. Penelitian dianggap dapat diandalkan bila memberikan hasil yang konsisten untuk pengukuran yang sama. Tidak bisa diandalkan bila pengukuran yang berulang itu memberikan hasil yang berbeda-beda (Sanaky, Saleh, and Titaley 2021:433–434).

Reliabilitas merujuk pada konsistensi hasil pengukuran atau observasi ketika fakta atau realitas diukur atau diamati beberapa kali pada waktu yang berbeda. Alat dan metode yang digunakan untuk mengukur atau mengamati memainkan peran penting secara bersamaan. Sebuah kuesioner dianggap reliabel atau dapat dipercaya jika jawaban seseorang terhadap pertanyaan-pertanyaan dalam kuesioner tersebut tetap konsisten dari waktu ke waktu, dengan hasil yang relatif sama. Oleh karena itu, uji reliabilitas adalah tes yang bertujuan untuk mengukur ketepatan atau keandalan suatu tes, yaitu apakah tes tersebut akan memberikan hasil yang sama atau hampir sama setiap kali digunakan.

Untuk mengetahui reabilitas soal, penulis menggunakan sebuah tes dan dicobakan satu kali (*Single Test – Single Trial Method*) dengan menggunakan *Formula Spearman-Brown Model Ganjil Genap*. Jika untuk menguji realibilitas angket secara keseluruhan dapat digunakan *Spearman Brown*. Rumus *Spearman Brown* yang dimaksud adalah:(Riduwan 2008:102)

$$r_{11} = r_{11} = \frac{2 \cdot r_b}{1 + r_b}$$

Keterangan:

 r_{11} = Koefisien reabilitas internal seluruh item

 r_{b} = Korelasi *Product Moment* antara belahan (ganjil-genap) awal akhir Berikut tabulasi pengelompokkan item ganjil dan genap, yaitu:

 $\label 3.9$ Perhitungan-Perhitungan Untuk Memperoleh $R_{xy} = R_{hh} = R_b$ Tentang Penggunaan Metode Pembelajaran

No	Nama Siswa	Skor Item Bernomor		XY	X^2	Y^2
	M WI	Item	Item	42		
	All	Ganjil	Genap	1/1		
	64/11	(X)	(Y)	1	9/2	
1.	Adinda	26	29	754	676	841
2.	Ahmad Haikal	26	25	650	676	625
3.	Aisyah	35	33	1155	1225	1089
4.	Alvaro	30	22	660	900	484
5.	Audy	25	27	675	625	729
6.	Ayu	34	28	952	1156	784
7.	Az <mark>m</mark> ya	34	40	1360	1156	1600
8.	Azzara	36	35	1260	1296	1225
9.	Balqis	26	28	728	676	784
10.	Cantika	31	36	1116	961	1296
11.	Charesta	37	33	1221	1369	1089
12.	Destyani	32	30	960	1024	900
13.	Devano	25	23	575	625	529
14.	Faeza	31	18	558	961	324
15.	Fauzan	34	30	1020	1156	900
16.	Keynara	36	30	1080	1296	900
17.	Kiara	23	25	575	529	625
18.	Marina	37	38	1406	1369	1444
19.	Muhammad Arseno	25	26	650	625	676
20.	Muhamad Arsyad	32	27	864	1024	729

Σ	30	943	894	28475	30231	27424
30.	Zulfa Izzary	37	33	1221	1369	1089
29.	Vania	31	28	868	961	784
28.	Syakila	23	31	713	529	961
27.	Sheza	32	21	672	1024	441
26.	Rayza	33	29	957	1089	841
25.	Rasyid	31	32	992	961	1024
24.	Raihan	36	37	1332	1296	1369
23.	Raisa	35	31	1085	1225	961
22.	Naraya	34	34	1156	1156	1156
21.	Naisha	36	35	1260	1296	1225

Selanjutnya di substitusikan ke dalam rumus:

$$r_b = \frac{N \sum xY - (\sum x)(\sum Y)}{\sqrt{\{N \sum x^2 - (\sum x)^2\}\{N \sum Y^2 - (\sum Y)^2\}}}$$

$$= \frac{30 \times 28475 - (943)(894)}{\sqrt{\{(30 \times 30231)\}(943)^2\{30 \times 27424 - (894)^2\}}}$$

$$= \frac{854250 - 843042}{\sqrt{(906930 - 889249)(822720 - 799236)}}$$

$$= \frac{11208}{\sqrt{17681 \times 23484}}$$

$$= \frac{11208}{\sqrt{415220604}}$$

$$= \frac{11208}{20376,96}$$

$$= 0,55$$

Jadi,
$$r_b = 0.55$$

Selanjutnya mencari (menghitung) koefisien Reliabilitas tes (r_{tt} atau r_{11}) dengan menggunakan rumus, sebagai berikut:

$$\mathbf{r}_{11} = \frac{2 \mathbf{r}_b}{1 + \mathbf{r}_b}$$

$$=\frac{2 \times 0,55}{1+0,55}$$

$$=\frac{1.1}{1.55}=0.70$$

Berdasarkan hasil hitung, dapat diperoleh koefisien reliabilitas tes (r_{11}) sebesar 0,70 dan r $\frac{11}{22}$ sebesar 0,44 Hasil analisis tingkat realibilitas angket menunjukkan bahwa nilai $r_{11} > r \frac{11}{22}$ (0,70 > 0,44). Dengan demikian angket penelitian ini memiliki realibilitas, artinya angket dalam penelitian ini mempunyai tingkat kehandalan yang meyakinkan untuk digunakan.

18		Skor	Item			11 6
П		Berne	omor			
No	Nama Siswa	Item	Item	XY	X^2	Y^2
\mathcal{M}	1	Ganjil	Genap	44		11 5
. \\		(X)	(Y)			.115
1.	Adinda	27	16	432	729	256
2.	Ahmad Haikal	27	25	675	729	625
3.	Aisyah	40	35	1400	1600	1225
4.	Alvaro	27	29	783	729	841
5.	Audy	23	32	736	529	1024
6.	Ayu	37	34	1258	1369	1156
7.	Azmya	29	30	870	841	900
8.	Azzara	34	33	1122	1156	1089
9.	Balqis	28	30	840	784	900
10.	Cantika	39	34	1326	1521	1156
11.	Charesta	37	33	1221	1369	1089

12.	Destyani	22	28	616	484	784
13.	Devano	34	22	748	1156	484
14.	Faeza	29	19	551	841	361
15.	Fauzan	31	34	1054	961	1156
16.	Keynara	31	30	930	961	900
17.	Kiara	33	19	627	1089	361
18.	Marina	37	34	1258	1369	1156
19.	M. Arseno	26	22	572	676	484
20.	M. Arsyad	29	17	493	841	289
21.	Naisha	32	35	1120	1024	1225
22.	Naraya	29	35	1015	841	1225
23.	Raisa	28	27	756	784	729
24.	Raihan	34	32	1088	1156	1024
25.	Rasyid	34	31	1054	1156	961
26.	Rayza	36	36	1296	1296	1296
27.	Sheza	31	23	713	961	529
28.	Syakila	22	27	594	484	729
29.	Vania	25	32	800	625	1024
30.	Zulfa Izzary	35	34	1190	1225	1156
Σ	30	926	868	27138	29286	26134

Selanjutnya di substitusikan ke dalam rumus:

$$\begin{split} r_b &= \frac{N \sum xY - (\sum X)(\sum Y)}{\sqrt{\{N \sum X^2 - (\sum X)^2\} \{N \sum Y^2 - (\sum Y)^2\}}} \\ &= \frac{30 \times 27138 - (926)(868)}{\sqrt{\{(30 \times 29286)\} (926)^2 \{30 \times 26134 - (868)^2\}\}}} \\ &= \frac{814140 - 803768}{\sqrt{878580 - 857476) (784020 - 753424)}} \\ &= \frac{10372}{\sqrt{21104 \times 30596}} \end{split}$$

$$= \frac{10372}{\sqrt{645697984}}$$

$$= \frac{10372}{25410,58}$$

$$= 0,40$$
Jadi, $\mathbf{r_b} = 0,40$

Selanjutnya mencari (menghitung) koefisien Reliabilitas tes (r_{tt} atau r_{11}) dengan menggunakan rumus, sebagai berikut:

$$r_{11} = \frac{2 r_b}{1 + r_b}$$

$$= \frac{2 \times 0.40}{1 + 0.40}$$

$$= \frac{0.8}{1.4} = 0.57$$

Berdasarkan hasil hitung, dapat diperoleh koefisien reliabilitas tes (r_{11}) sebesar 0,57 dan r $\frac{11}{22}$ sebesar 0,40 Hasil analisis tingkat realibilitas angket menunjukkan bahwa nilai $r_{11} > r$ $\frac{11}{22}$ (0,57 > 0,40). Dengan demikian angket penelitian ini memiliki realibilitas, artinya angket dalam penelitian ini mempunyai tingkat kehandalan yang meyakinkan untuk digunakan.

H. Teknik Analisis Data

Analisis data merupakan tahap penting dalam penelitian untuk menarik kesimpulan yang valid dan dapat dipercaya. Jadi teknik analisis data dalam penelitian ini responden akan dibagi menjadi dua kelompok, hal ini bertujuan untuk mengetahui apakah ada perbedaan yang berpengaruh antara kelompok eksperimen dan kelompok kontrol dalam aktivitas belajar siswa. Sebelum memberikan perlakuan yang berbeda kepada masing-masing kelompok, peneliti akan memberikan pretest kepada setiap kelompok. Kemudian, untuk mengetahui seberapa baik kemampuan siswa, peneliti akan memberikan hasil pretest. Setelah

perlakuan berbeda diberikan kepada masing-masing kelompok, peneliti akan membandingkan hasil tes post-test tersebut.

Untuk mengetahui perbedaan pengaruh metode jarimatika dan metode konvensional terhadap aktivitas belajar siswa kelas III di SDN 75 Kota Bengkulu, data yang diperoleh dianalisis melalui langkah-langkah sebagai berikut:

1. Mencari mean dengan rumus:

$$\bar{\chi} = \frac{\sum Fx}{n}$$

Keterangan:

 \bar{x} = Nilai rata-rata

 $\sum Fx$ = Jumlah dari hasil perkalian antara masing-masing skor dengan frekuensinya

2. Mencari Standard Deviasi dengan rumus:

$$SD = \sqrt{\frac{n \cdot \sum f x^2 - (\sum f x)^2}{n(n-1)}}$$

Keterangan:

SD = Standard Deviasi

N = Jumlah Sampel

 $\sum f x^2$ = Jumlah hasil perkalian antara frekuensi tiap-tiap skor (f) dengan skor yang telah dikuadratkan lebih dahulu (x^2)

 $(\sum fx)^2$ = Kuadrat jumlah hasil perkalian antara frekuensi tiap-tiap skor (f) dengan masing-masing skor yang bersangkutan (x)

3. Menentukan kriteria TSR (Tinggi, Sedang, Rendah)

Setelah mengetahui *mean* dan *standar deviasi*, maka langkah selanjutnya menetapkan TSR sebagai berikut:

Tinggi: M + 1. SD ke atas

Sedang: M - 1. SD sampai M + 1. SD

Rendah: M - 1. SD ke bawah

Selanjutnya uji prasyarat yang digunakan dalam penelitian ini yaitu menggunakan uji normalitas, uji homogenitas, uji hipotesis regresi linier sederhana, uji linieritas regresi, dan uji T.

1. Uji Normalitas

Uji normalitas dilakukan untuk mengetahui sampel-sampel yang diambil mengikuti asumsi distribusi normal. Dengan kata lain, uji normalitas data digunakan untuk memberikan interpretasi terhadap angka-angka yang diperoleh dari pengumpulan data. Pada penelitian ini, penentuan data uji normalitas dilakukan dengan menggunakan SPSS for windows versi 27. Adapun tahap-tahap uji normalitas dengan menggunakan SPSS adalah sebagai berikut.

- a. Program SPSS dibuka di laptop.
- b. Klik *variable view*. Pada baris pertama di isi dengan hasil belajar, dan baris kedua isi dengan kelas. Kemudian, pada kolom *values* yang ada di baris kelas, isikan dengan "1. *Pretest/posttest* eksperimen", "2. *Pretest/posttest* kontrol". Lalu, pada kolom *decimals* ubah menjadi 1.
- c. Setelah *variable view* diisi, selanjutnya masuk ke data *view* dan input nilainilai *pretest* dan *posttest* siswa.
- d. Kemudian, klik *Analiyze Descriptive Statistics Explore*. Pada kotak *explore*, pindahkan hasil ke bagian *dependent list* dan kelas ke bagian faktor *list*.
- e. Lalu, klik plots dan centang bagian *normality plots with tests* dan pada bagian *spread vs level with leavene test*, pilih *power estimation*. Setelahnya klik *continue* Ok

Data penelitian dikatakan berdistribusi normal apabila memiliki tingkat signifikansi lebih dari 5% atau 0,05 (Anastasi *et al.*,2023: 95).

2. Uji Homogenitas

Uji homogenitas merupakan uji prasyarat dalam analisis statistika yang harus dibuktikan apakah dua atau lebih kelompok data sampel berasal dari populasi

dengan varians yang sama atau tidak (Widana and Muliani 2020:29). Uji yang digunakan dalam penelitian ini yaitu Uji-F, adapun rumusnya sebagai berikut (Widana and Muliani 2020:120):

$$F_{hitung} = \frac{varian \ terbesar}{varian \ terkecil}$$

 $F_{\text{hitung}} \ge F_{\text{tabel}}$ maka tidak homogen (Ho: $\sigma_1^2 \ne \sigma_2^2$)

$$F_{\text{hitung}} \le F_{\text{tabel}}$$
 berarti homogen (Ho: $\sigma_1^2 = \sigma_2^2$)

3. Uji Hipotesis Regresi Linier Sederhana

Regresi atau peramalan adalah suatu proses memperkirakan secara sistematis tentang apa yang paling mungking terjadi di masa yang akan datang berdasarkan informasi masa lalu dan sekarang yang dimiliki agar kesalahannya dapat diperkecil. Regresi juga dapat diartikan sebagai usaha memperkirakan perubahannya (Widana and Muliani 2020:147–48).

Persamaan regresi dirumuskan:

$$\dot{Y} = a + b \times$$

Keterangan:

 $\dot{Y} = (dibaca Y topi)$ subjek variabel terikat yang diproyeksikan

X = variabel bebas yang mempunyai nilai tertentu untuk diprediksikan

a = nilai konstanta harga Y jika X = 0

b = nilai arah sebagai penentu ramalan (prediksi) yang menunjukkan nilai peningkatan (+) atau nilai penurunan (-) variabel Y

$$a = . \sum Y - b. \sum X$$

$$b = \frac{n \cdot \sum XY - \sum X \cdot \sum Y}{n \cdot \sum X^2 - (\sum Y)^2}$$

4. Uji Linier Regresi

Uji linearitas regresi ini bertujuan untuk mengidentifikasi pengaruh yang bersifat linier dari penggunaan metode jarimatika dalam pembelajaran

matematika untuk meningkatkan aktivitas belajar siswa kelas III di SDN 75 Kota Bengkulu. Adapun untuk menguji linieritas regresi digunakan rumus sebagai berikut (Widana and Muliani 2020:126).

$$JK Reg(a) = \frac{(\sum Y)^2}{n}$$

$$JK Reg(b|a) = b. \left\{ \sum XY - \frac{(\sum X)(\sum Y)}{n} \right\}$$

$$JK_{Res} = \sum Y^2 - JK_{Reg(b|a)} - JK_{Reg(a)}$$

$$Keterangan:$$

$$JK Reg(a) = Jumlah kuadrat koefisien a$$

$$KReg(a) = Jumlah kuadrat ragrasi$$

JK Reg(b|a) = Jumlah kuadrat regresi

= Jumlah kuadrat sisa JK_{Res}

Keterangan:

R / K Reg(b|a) = Rata-rata jumlah kuadrat regresi

RJK Res = Rata-rata jumlah kuadrat residu

Setelah itu untuk menguji signifika menggunakan rumus sebagai berikut:

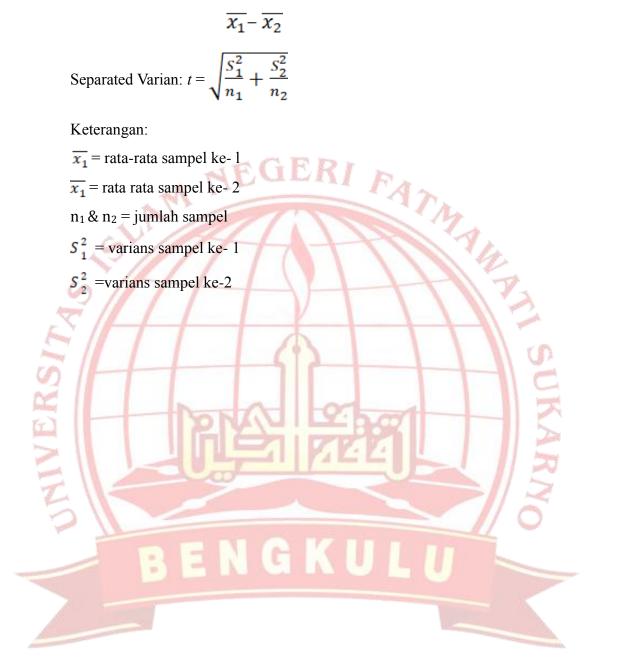
$$F_{\text{hitung}} = \frac{R J K_{Reg(b|a)}}{R J K_{Res}}$$

Pengambilan keputusan:

F_{hitung} ≤ F_{tabel}, maka Ho ditolak artinya data berpola linier

F_{hitung} ≥ F_{tabel}, maka Ho diterima artinya data berpola tidak linier

5. Uji t


Untuk membandingkan pengaruh penggunaan metode pembelajaran jarimatika dan metode konvensional terhadap aktivitas belajar siswa, dilakukan analisis menggunakan uji t-test parametris varians. Adapun rumus yang dimaksud sebagai berikut:

$$\overline{\chi_1}$$
 – $\overline{\chi_2}$

Separated Varian: $t = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$

Keterangan:

- $\overline{x_1}$ = rata-rata sampel ke-1
- $\overline{x_1}$ = rata rata sampel ke- 2
- $n_1 \& n_2 = jumlah sampel$
- S_1^2 = varians sampel ke- 1
- =varians sampel ke-2

